A Linear Space Data Structure for Orthogonal Range Reporting and Emptiness Queries

نویسنده

  • Yakov Nekrich
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Structures for Restricted Triangular Range Searching

We present data structures for triangular emptiness and reporting queries for a planar point set, where the query triangle contains the origin. The data structures use near-linear space and achieve polylogarithmic query times.

متن کامل

Approximate Range Emptiness in Constant Time and Optimal Space

This paper studies the ε-approximate range emptiness problem, where the task is to represent a set S of n points from {0, . . . , U − 1} and answer emptiness queries of the form “[a; b] ∩ S 6= ∅ ?” with a probability of false positives allowed. This generalizes the functionality of Bloom filters from single point queries to any interval length L. Setting the false positive rate to ε/L and perfo...

متن کامل

Amortized Bounds for Dynamic Orthogonal Range Reporting

We consider the fundamental problem of 2-D dynamic orthogonal range reporting for 2and 3-sided queries in the standard word RAM model. While many previous dynamic data structures use O(log n/ log log n) update time, we achieve faster O(log n) and O(log n) update times for 2and 3-sided queries, respectively. Our data structures have optimalO(log n/ log log n) query time. Only Mortensen [13] had ...

متن کامل

Cell Probe Lower Bounds and Approximations for Range Mode

The mode of a multiset of labels, is a label that occurs at least as often as any other label. The input to the range mode problem is an array A of size n. A range query [i, j] must return the mode of the subarray A[i], A[i+ 1], . . . , A[j]. We prove that any data structure that uses S memory cells of w bits needs Ω( log n log(Sw/n) ) time to answer a range mode query. Secondly, we consider th...

متن کامل

Space-Time Tradeoffs for Emptiness Queries

We develop the rst nontrivial lower bounds on the complexity of online hyperplane and halfspace emptiness queries. Our lower bounds apply to a general class of geometric range query data structures called partition graphs. Informally, a partition graph is a directed acyclic graph that describes a recursive decomposition of space. We show that any partition graph that supports hyperplane emptine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Comput. Geometry Appl.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2006